Синус (sin x) и косинус (cos x) – свойства, графики, формулы
Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Синус (sin x) и косинус (cos x) – свойства, графики, формулы». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
- Область определения функции — множество действительных чисел: D(y)=R, исключая числа α=π/2+πn.
- Множество значений — множество действительных чисел: E(y)=R.
- Функция y=tg(α) — нечтная: tg(−α)=−tg α.
- Функция оказывается периодической, самый маленький неотрицательный период соответствует π: tg(α+π)=tg(α).
- График функции пересекает ось Ох при α=πn,n∈Z.
- Промежутки знакопостоянства: y>0 при (πn;π/2+πn),n∈Z и y при (−π/2+πn;πn),n∈Z.
- Функция является непрерывной, есть производная с любым значением аргумента из области определения: (tgx)′=1/cos2x.
- Функция y=tg α возрастает при α∈(−π/2+πn;π/2+πn),n∈Z.
- Область определения функции — множество действительных чисел: D(y)=R, исключая числа α=πn.
- Множество значений — множество действительных чисел: E(y)=R.
- Функция y=ctg(α) — нечетная: ctg(−α)=−ctg α.
- Функция периодическая, самый маленький неотрицательный период равен π: ctg(α+π)=ctg(α).
- График функции пересекает ось Ох при α=π/2+πn,n∈Z.
- Промежутки знакопостоянства: y>0 при (πn;π/2+πn),n∈Z и y при (π/2+πn;π(n+1)),n∈Z.
- Функция является непрерывной, есть производная в любом значении аргумента из области определения: (ctgx)′=−1/sin2x.
- Функция y=ctg α убывает при α∈(πn;π(n+1)),n∈Z.
Тригонометрия. Основные тригонометрические тождества.
График синуса и косинуса
Заметим, что координаты точек, лежащей на единичной окружности, варьируются в пределах от – 1 до 1. Это означает, что значение синуса и косинуса также может находиться только в интервале между этими числами. Получается, что область значения этих ф-ций – это промежуток [– 1; 1].
Вычислить синус и косинус можно для абсолютно любого угла поворота, поэтому область определения этих тригонометрических ф-ций – вся числовая прямая, то есть промежуток (– ∞; + ∞).
Изучение графиков тригонометрических функций начнем с синуса. В тригонометрии при построении графика синуса принято по оси Ох откладывать значение угла в радианах, а не в градусах. Из-за этого в школьной тетради тяжело точно отметить точки, через которые проходит этот график. Например, возьмем угол, равный 90°. Его величина в радианах π/2, а sinπ/2 = 1. Получается, график должен пройти через точку (π/2; 1). Однако число π/2 – иррациональное, равное примерно 1,5708…, и точно отложить отрезок длиной π/2 невозможно.
Поэтому в учебных целях график строят приближенно (естественно, что на практике точный график можно построить с помощью компьютера с любой требуемой точностью). Считают, что величина π/2 примерно равна 1,5, то есть дроби 3/2. Если выбрать масштаб, при котором единице равны 2 клеточки, то π/2 – это 3 клеточки. Тогда π/6 – это одна клеточка, а π/3 – две.
Формулы понижения степени.
Из формул кратного аргумента выводятся формулы:
sin2a = (1 – cos 2a)/2; | cos2a = (1 + cos 2a)/2; |
sin3a = (3 sin a – sin 3a)/4; | cos3a = (3 cosa + cos 3a)/4. |
С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.
- Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
- Г. Б. Двайт Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
Понятия в тригонометрии
Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.
Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.
Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.
Развернуть структуру обучения
Свернуть структуру обучения
Тригонометрическая функция тангенс угла, обозначается как tg. «Тангенс» дословно переводится с латинского как «касающийся». Тангенс острого угла прямоугольного треугольника есть отношение катета, лежащего против этого угла, ко второму катету. Для визуального запоминания: На рисунке внизу нужные стороны треугольника обозначены двусторонней стрелкой. «Синий» катет нужно разделить на «красный». | Тригонометрична функція тангенс кута, позначається як tg. «Тангенс» дослівно перекладається з латинської як «що торкається». Тангенс гострого кута прямокутного трикутника є відношення катета, що лежить проти цього кута, до другого катету. Для візуального запам’ятовування: На малюнку внизу потрібні сторони трикутника позначені двосторонньою стрілкою. «Синій» катет потрібно розділити на «червоний». |
Прямоугольный треугольник
Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.
Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза — это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.
Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.
Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.
Свойства синуса и других тригонометрических функций
Из введенных определений синуса, косинуса угла и других функций следуют несколько важных выводов об их свойствах:
- Во-первых, тригонометрические функции являются безразмерными величинами.
- Во-вторых, их значение не зависит от размеров треугольника. Последний факт легко доказать, если обратиться к тому же рисунку вверху и рассмотреть треугольники ABC и AFE. Эти треугольники являются подобными, так как имеют общий угол в вершине A, это означает, что выполняется следующее равенство: BC/AB = FE/AF = sin(θ). Аналогичные равенства можно привести для остальных тригонометрических функций.
- В-третьих, любая тригонометрическая функция может быть выражена с использованием максимум двух других. Это утверждение верно, поскольку все три стороны треугольника фигурируют в выражениях для двух тригонометрических функций. Например, tg(θ) = sin(θ)/cos(θ).
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β :
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Начальная точка на окружности — точка A c координатами (1 , 0).
Положительному числу t
Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Синус (sin) числа t
Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t = y
Косинус (cos) числа t
Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t = x
Тангенс (tg) числа t
Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Покопаемся в расчётах
Давайте опишем синус с помощью вычислений. Как в случае с e, мы можем разбить синус на маленькие части:
- Начнем с 0 и дорастем до единичной скорости
- В каждый момент времени мы будем замедляться из-за отрицательного ускорения
И как обо всем этом думать? Посмотрите, как каждое наше действие изменяет расстояние от центра:
- Наш первый скачок увеличивает расстояние линейно: у (расстояние от центра) = х (затраченное время)
- В любой момент, мы чувствуем возвращающую силу -х. Мы интегрируем дважды, чтобы обратить отрицательное ускорение в расстояние:
Понимание того, как ускорение влияет на расстояние, похоже на наблюдение за тем, как прибавки влияют на ваш банковский счёт. «Прибавка» должна изменять ваш доход, а ваш доход изменяет состояние вашего банковского счёта (два интеграла «по команде»).
Так что после «х» секунд, мы уже догадаемся, что синус это «х» (начальный импульс) минус x^3/3! (эффект ускорения):
Что-то не так — синус не спадает! В случае с е мы видели, что «проценты приносят свои проценты», в случае с синусом происходит то же самое. «Возвращающая сила» меняет наше расстояние на -x^3/3!, что создает другую возвращающую силу. Рассмотрите пружину: если отпустить пружину с грузиком внизу, то толчок будет достаточно большим, чтобы создать другой толчок, который потянет грузик обратно вверх, а потом снова вниз. Ох уж эти неугомонные пружины!
Нам нужно рассмотреть каждую возвращающую силу:
- y = x — это наше изначальное движение, которое создает возвращающую силу удара:
- y = -x^3/3!, которая создает возвращающую силу удара:
- y = x^5/5!, которая создает возвращающую силу удара:
- y = -x^7/7!, которая создает возвращающую силу удара…
Точь-в-точь как е, синус можно описать бесконечным уравнением:
Я видел эту формулу много раз, но до меня дошел ее смысл только когда я представил синус как комбинацию начального импульса и возвращающих сил. Начальный импульс (y = x, растет вверх) в итоге превосходит возвращающая сила (которая толкает нас вниз), и эта сила в свою очередь постепенно компенсируется своей возвращающей силой (что снова толкает нас вверх), и так далее.
Пара интересных заметок:
- Рассматривайте «возвращающую силу» как «положительный или отрицательный процент». Так проще понять связь синуса и е в формуле Эйлера. Синус ведет себя как е, кроме моментов, когда он начинает зарабатывать отрицательный процент. Тут нам еще надо поучиться :).
- Для маленьких чисел «y = x» — неплохое предположение для синуса. Мы просто берем начальный импульс и игнорируем возвращающие силы.
Определение 2: Бесконечный ряд
Я спрятал слона в комнате: как мы вообще вычисляем синус? Мой калькулятор, что, каждый раз рисует окружность и замеряет его?
Рад вам поведать, как можно вычислить синус без окружностей.
Синус — это ускорение в сторону, противоположную тому, где вы находитесь.
Пользуясь нашим примером с банковским счётом: представьте, что ваш шеф каждую неделю решил менять вашу зарплату на сумму, противоположную текущей на вашем банковском счёте. Если у вас сейчас есть 50 рублей, на следующей неделе шеф выдаст на 50 рублей меньше. Конечно, поскольку ваш доход будет 75 рублей, вы всё еще будете в плюсе (75 — 50) но в итоге ваш баланс уменьшится, поскольку «прибавки» шефа превзойдут ваши доходы.
Но не отчаивайтесь! Как только баланс становится отрицательным (скажем, у вас -50 рублей), ваш босс выдаст вам на целых 50 рублей больше. Затем снова баланс станет отрицательным (с его ростом шеф выдает всё меньше денег), и так будет продолжаться постоянно. Баланс будет то положительный, то нулевой, то отрицательный.
Этот пример также поясняет, почему в нейтральной точке (в 0) скорость синуса максимальна: когда вы на максимуме, вы начинаете падать и собирать всё больше «отрицательных прибавок», которые довольно быстро тянут вас к 0. После прохождения 0 вы начинаете получать наиболее значительные положительные прибавки и замедляетесь., потому что как только уходите в плюс, шеф опять начинает отнимать от вашей зарплаты.
Между прочим: поскольку синус — это ускорение, обратное к вашему текущему положению, а окружность сделана из горизонтальной и вертикальной синусоиды… вы поняли! Круговое движение может быть описано как «постоянное движение в направлении, противоположном текущей позиции, по направлению к горизонтальному и вертикальному центру».